Arată înregistrarea sumară a articolului

dc.contributor.authorNicolau, Viorel
dc.contributor.authorPuşcaşu, Gheorghe
dc.contributor.authorPopa, Rustem
dc.date.accessioned2015-12-09T11:08:15Z
dc.date.available2015-12-09T11:08:15Z
dc.date.issued2000
dc.identifier.issn1221-454X
dc.identifier.urihttp://10.11.10.50/xmlui/handle/123456789/3704
dc.descriptionThe Annals of "Dunarea de Jos" University of Galatien_US
dc.description.abstractThe clustering algorithms based on potential functions are capable of clustering a set of data, making no implicit assumptions on the cluster shapes and without knowing in advance the number of clusters. They are similarity-based type clustering algorithms and do not use any prototype vectors of the clusters. In this paper, some properties of these algorithms are studied: points arrangement tendency, constant potential surface, cluster shapes and robustness to noise.en_US
dc.language.isoenen_US
dc.publisher"Dunarea de Jos" University of Galatien_US
dc.subjectpotential functionen_US
dc.subjectclustering algorithmen_US
dc.subjectmeasure of similarityen_US
dc.titleProperties Of Potential Function- Based Clustering Algorithmsen_US
dc.typeArticleen_US


Fișiere la acest articol

Thumbnail

Acest articol apare în următoarele colecții(s)

Arată înregistrarea sumară a articolului