Arată înregistrarea sumară a articolului

dc.contributor.authorCauteș, Gheorghe
dc.date.accessioned2017-11-14T13:09:51Z
dc.date.available2017-11-14T13:09:51Z
dc.date.issued2009
dc.identifier.issn1224-5615
dc.identifier.urihttp://10.11.10.50/xmlui/handle/123456789/4856
dc.descriptionThe Annals of ''Dunarea de Jos'' University of Galati : Fascicle XIV MECHANICAL ENGINEERING, ISSN 1224 - 5615ro_RO
dc.description.abstractThis work will analyze the non-linear vibrations of the mechanical systems, actually the ones with non-linear damping. If we consider damping F( x,x ) x( k k x );k1,k2 R 2 = − 1 − 2 Î & & & then the differential equation that characterizes the movement of the system is a Rayleigh one. Using a derivation and a substitution, the differential equation becomes a Van der Pol one, for which we find the analytical approximate solution.ro_RO
dc.language.isoenro_RO
dc.publisherUniversitatea "Dunarea de Jos" din Galațiro_RO
dc.subjectnon-linearro_RO
dc.subjectmechanical systemro_RO
dc.subjectvibrationro_RO
dc.titleAbout the Vibrations of the Mechanical Systems with Non-Linear Dampingro_RO
dc.typeArticlero_RO


Fișiere la acest articol

Thumbnail

Acest articol apare în următoarele colecții(s)

Arată înregistrarea sumară a articolului